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4 High dimensional copulas in this paper refer to multivariate copula models describing the dependence 
of N time series when N is greater than 50. In Oh and Patton (2018), a low dimensional copula is 
defined as N no more than 5 and a high dimensional copula is defined as N between 50 and 250.

I. INTRODUCTION
Modeling the dependence of a large number of financial asset returns is critical in 
financial applications such as asset allocation and risk management. In practice, 
the dependence of asset returns is shown to be time-varying. For example, in the 
2008 subprime crisis, the financial markets were found to be more correlated and 
to have a contagion effect. But existing models often fail to capture the increased 
dependence and lead to an underestimation of portfolio risk during crisis periods. 
Hence, it is important for investors to model flexible dependence patterns of 
financial returns. In this context, copulas are widely used, as they provide more 
flexible dependence patterns than parametric distributions, such as multivariate 
normal or Student’s t. As an example, investors can make use of copula models to 
evaluate the downside risk of a portfolio. Financial assets are more likely to crash 
together than boom together. This asymmetric dependence of asset returns is well 
captured by some copulas, and better understanding of asset return dependence 
improves estimates of portfolio risk. By contrast, linear correlation fails to capture 
this asymmetric feature and may lead to an underestimating downside risk in 
portfolio management. The literature provides numerous empirical studies on this 
topic (see, e.g., Patton (2006), Okimoto (2008), Wu and Liang (2011), and Elkamhi 
and Stefanova (2015)).

However, early applications of copulas are almost all bivariate in nature. That 
is, the copula is used to describe the dependence structure between two assets. 
It remains a challenge for academia and practitioners to model a highly flexible 
dependence structure among multivariate assets. When the number of assets is 
relatively large, models developed for low-dimension problems are often not 
applicable, either because the generalizations beyond the bivariate model are too 
restrictive, or because the simple generalization of the bivariate case leads to a 
proliferation of parameters and unmanageable computation complexity. For 
instance, Archimedean copulas are extremely restrictive in the multi-dimensional 
case, as they imply equicorrelated ranks. Another example is the N-dimensional 
Gaussian or t copula, whose parameters are difficult to estimate due to “curse of 
dimensionality” when N is large.4 In high dimensional applications, we need to 
find a tradeoff between flexibility and parsimony.

Previous work on extending bivariate copula models to higher dimensions 
includes Genest, Gendron, and Bourdeau-Brien (2009) and Patton (2009), 
Christoffersen, Errunza, Jacobs, and Langlois (2012), and Gonzalez-Pedraz, Moren, 
and Pena (2015). We extend the model suggested in Christoffersen et al. (2012) and 
Gonzalez-Pedraz et al. (2015), and propose a dynamic skewed copula to model 
multi-variate dependence flexibly. Note that the so-called “dynamic” in our model 
refers to time variations in skewness parameters, while the skewness parameters 
in the aforementioned two copulas are static.

We make several contributions to the literature. First, the dynamic skewed 
copula can describe changing dependence patterns, since the skewness parameters 
follow an autoregressive procedure. By contrast, the skewness parameters in Christ 



Modeling High Dimensional Asset Pricing Returns Using a Dynamic Skewed Copula Model 3

offersen et al. (2012) and Gonzalez-Pedraz et al. (2015) are constant, suggesting an 
unchanged dependence pattern throughout the sample period; that is, the upper 
tail dependence of all variables is always higher (or lower) than the lower tail 
dependence. Second, the dynamic skewed copula provides a parsimonious way 
to make each pair of variables display different dependence patterns. In addition, 
our model significantly reduces the number of parameters to be estimated while 
keeping flexibility in the model specification. Both Gonzalez-Pedraz et al. (2015) 
and our model specify N different skewness elements for N variables. However, 
the copula in Gonzalez-Pedraz et al. (2015) has N skewness parameters to be 
estimated and may encounter the “curse of dimensionality” problem, while our 
dynamic model avoids this problem with only five unknown parameters.

We apply our new model to investigate the dependence pattern of 50 U.S. 
exchange-traded fund (ETF) returns. Our dynamic skewed copula provides better 
goodness-of-fit than those in Christoffersen et al. (2012) and Gonzalez-Pedraz et 
al. (2015). In particular, the dynamic settings of skewness parameters enable us to 
characterize different dependence patterns in crisis periods and in tranquil periods. 
This implies that financial asset returns tend to exhibit time-varying rather than 
static dependence patterns. Thus, for investors, it is inappropriate to stick to one 
dependence structure when modeling high dimensional financial returns.

This paper proceeds as follows. Section 2 introduces the dynamic skewed 
copula model and explains how to estimate it. Section 3 provides summary 
statistics of ETF returns. Section 4 analyzes the in-sample dependence structure 
of these ETF returns. Out-of-sample performance of the model is presented in 
Section 5. Finally, Section 6 sets forth our conclusions.

II. THE DYNAMIC SKEWED COPULA MODEL
The dynamic skewed copula model discussed in this paper originates from the 
skewed t copula developed by Christoffersen et al. (2012). Let (u1t ,· · ·, uNt) denote 
the cumulative distribution functions (CDF) of N variables, t = 1, · · ·, T . Their 
dependence is described by a copula function C(u1t ,· · ·, uNt). The skewed t copula 
in Christoffersen et al. (2012), denoted by Cskt is given by

 
   (1)

where Rt is the correlation matrix,   is the degrees of freedom,   is the skewness 
parameter, which is a scalar.  (·) is the CDF of N-dimensional generalized 
hyperbolic skewed t distribution with zero mean as in Demarta and McNeil 
(2005). For i = 1, · · ·, N,  (·) is the inverse of univariate skewed t CDF on the ith 
subordinate with zero mean and unit variance. Please refer to Christoffersen et al. 
(2012) for details of  (·).

The evolution of Rt is similar to the dynamic mechanism in the Engle (2002) 
dynamic conditional correlation (DCC) model.

       (2)

,
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where  is the unconditional covariance matrix of zt = (z1t ,. . ., zNt)‘1. For i = 1,· · ·, N, 
zit =  (uit). a1 > 0, a2 > 0 and a1 + a2 < 1, the conditional correlation Rt is mean-
reverting. This model Cskt has four parameters qskt = (a1, a2,  , )’.

Note that in Christoffersen et al. (2012), the skewness parameter  is a scalar 
rather than a vector, indicating that all variables have identical asymmetry 
parameters. There are two problems with this specification. First, it is unable to 
describe non-exchange dependence patterns such that C(· · ·, uit, · · ·, ujt, · · ·)≠C(· 
· ·, ujt, · · ·, uit, · · ·) for i≠j. Second, it is unable to capture the time variation in 
dependence due to the constant skewness parameter. In reality, the multivariate 
dependence of financial assets may be time-varying over time.5

To overcome these problems, we modify the copula in Christoffersen et al. (2012) 
via the following two steps. First, we assume each marginal CDF uit corresponds 
to a different skewness parameter. The skewness parameter now becomes an 
N-dimensional vector rather than a scalar. In this case, the multivariate skewed t 
copula, denoted by Cmskt, is written as:

 
   (3)

The skewness parameter g = (g1 ... gN)’ is an N-dimensional vector, but is still 
time-invariant. The definitions of Rt and  are the same as those for Cskt. The 
parameters in Cmskt are qskt = (a1, a2, v, g ’)’, so N + 3 parameters are to be estimated. 
We are not the first to propose Cmskt, as Gonzalez-Pedraz et al. (2015) use this model 
to study the dependence of three assets: oil futures, gold futures, and the S&P 500 
equity index. Clearly, simply extending Cskt to Cmskt is applicable only for small N, 
such as N = 3 in Gonzalez-Pedraz et al. (2015). For large N, it is difficult to estimate 
all the parameters, due to the “curse of dimensionality.” In practice, to reduce 
the number of unknown parameters, we can group the gi s and set the gi s within 
the same group to be equal. But such a specification is very subjective and lacks 
statistical justification. We will use this type of constrained Cmskt in our empirical 
analysis of ETFs.

The second step is to specify a dynamic evolution process for the skewness 
vector. The dynamic mechanism is similar to the Engle (2002) DCC model. The 
modified model, called dynamic skewed copula Cdskt, is given by

,    (4)

      (5)

where b1 is the coefficient of data-driven term zt - 1 , and b2 lies within (-1, 1) to 
ensure gt is mean-reverting. Since E(zt) = E(zt - 1) = , the coefficient in front of  
is 1- . Note that both the copula correlation matrix Rt and skewness vector 
gt are defined based on the copula shocks zit =  (uit), rather than the return 
shocks (standardized residuals it from marginal distributions).

5 In Christoffersen et al. (2012), Qt is assumed to be mean-reverting at (1— φ)Q + φΓt, a weighted 
average of Q and a time-varying matrix Γt containing time-trend information. Here, we ignore the 
time trends in Qt by setting the weighting parameter φ = 0.
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The dynamic skewed copula Cdskt has five parameters qdskt = (a1, a2, v, b1, b2)’. 
By introducing dynamics into the skewness vector, Cdskt has great flexibility in 
capturing multivariate dependence with only a few parameters. The model has 
two desirable features. First, it allows each pair of assets to display dependence 
patterns that are distinct from other pairs. Second, it is able to describe changing 
dependence patterns over the time.

For the estimation procedure, we mainly follow Christoffersen et al. (2012). 
The only difference is that the copula’s skewness parameter is an N-dimensional 
vector in Cmskt and is an autoregressive vector in Cdskt. The joint distributions of 
financial returns are estimated via the following two steps.

First, we estimate each univariate marginal model and calculate the marginal 
CDF uit for i = 1,· · ·, N, t = 1, · · ·, T . Second, we estimate copula models by 
maximum composite likelihood estimation (MCLE). MCLE is employed because 
it yields consistent estimates for the true parameters in large scale problems, while 
the ordinary maximum likelihood estimation (MLE) may estimate the parameters 
driving the dynamic process with bias, as discussed in Engle, Shephard, and 
Shepphard (2008), Christoffersen et al. (2012), and Oh and Patton (2015).

For k = skt, mskt, dskt, the composite log-likelihood of copula Ck(u1t, · · ·, uNt; 

qk) is defined as

     (6)

where Ck(uit, ujt; qk) denotes the bivariate copula density of pair i and j for i, j=1, 
· · ·, N.

III. DATA DESCRIPTION
Our empirical analysis employs the dynamic skewed copula model to study the 
dependence of 50 US ETF returns (N = 50). The data set includes daily adjusted 
prices of four stock ETFs (STK) and five other types of ETF: bond (AGG), foreign 
exchange (Euro/Dollar, FXE), gold (GSG), oil (USO), and real estate (RWR).6 Stocks 
are selected from nine sectors, and in each sector only the top five firms with the 
highest market values are considered. All prices are in US dollars and are from 
Bloomberg. The ith (i= 1,· · ·, N) daily return is calculated as rit = 100 x (logPit - logPit-1), 
where Pit is the closing price of ETF i on day t.

The sample period is from July 24, 2006 to June 28, 2013, for a total of 1746 
daily observations. We divide the sample into two subperiods, such that the 
period from July 24, 2006 to June 30, 2011 is used for the in-sample estimation 
(1245 observations), and the remaining 501 observations, from July 1, 2011 to June 
28, 2013, are reserved for the out-of-sample portfolio performance evaluation.

6 Daily prices are adjusted for dividends. Calculation of dividends is as follows. For example, 
Materials Select Sector SPDR Fund (XLB) distributes $0.239 dividend per share on March 14, 2019. 
The closing price of XLB is $55.57, but the adjusted closing price is $55.239. We then use adjusted 
prices to account for the impacts of dividend distribution on stock prices.
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Figure 1. Price Series of the 50 ETFs
Panel (a) plots 45 stock ETFs prices over the sample period of July 24, 2006 - June 28, 2013. Panel (b) plots the ETF prices of bond 
(AGG), foreign exchange ETF (FXE), gold (GSG), oil (USO) and real estate (RWR) over the same sample period. 

Figure 1 plots the price series of the 50 ETFs. The movements of all stock 
ETFs and the real estate ETF are quite similar, while the behavior of the bond 
ETF generally differs from the others. These ETFs were greatly impacted by the 
2008 subprime crisis, as nearly all of them (except the bond ETF) suffered from a 
9-month decrease in prices following the crisis.

(b) 5 ETFs:  bond, foreign exchange, gold, oil and real estate
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Panel A summaries the descriptive statistics of 14 representative ETF returns over the sample period of July 24, 2006 - June 30, 2011. 
Std is the standard deviation. Kurtosis is the excess kurtosis. J-B is the Jarque-Bera test for normality. Ljung-Box(5) and ARCH(5) 
are the Ljung-Box tests for serial correlation and for ARCH effects with 5 lags. The ***, ** and * denote the significance level at 1%, 
5%, and 10%, respectively. Panel B gives the proportion of ETF pairs that have time-varying rank correlations within 45 stock ETFs 
(column 1), between 45 stocks and 5 other ETFs (column 2), within 5 other ETFs (column 3), and within all 50 ETFs (column 4). 
Based on Patton (2012), two ETFs, i and j, are expected to have time-varying dependence if the autoregressive vector (r1, r2,…rP)’ is 
jointly significant in the following model: uit ujt = r0 + Sp

p = 1 rP Uit-P Ujt-P with lags p = 1 or p = 5.

Panel A: In-sample descriptive statistics
Mean Std. Skewness Kurtosis J-B (103) Ljung-Box (5) ARCH (5)

Stocks
XLB(DD) 0.0118 2.8076 -0.3779 6.5718 2.2558*** 44.4638*** 85.3496***
XLE(XOM) 0.0254 2.3042 -0.4035 6.9109 2.4959*** 85.3132*** 43.2086***
XLF(WFC) -0.0086 3.9549 0.7616 12.2928 7.9151*** 92.0241*** 63.6810***
XLI(GE) 0.004 2.1224 0.1956 4.1057 0.8761*** 46.6722*** 56.1684***
XLK(MSFT) 0.0166 1.9895 0.1033 6.135 1.9422*** 52.9964*** 45.6344***
XLP(WMT) 0.0464 1.36 0.7098 12.8008 8.5571*** 63.2657 43.5734***
XLU(DUK) 0.0351 1.2326 0.7873 9.3449 4.6317*** 126.4957*** 38.0077**
XLV(JNJ) 0.0203 1.3694 -0.1759 6.0569 1.8973*** 55.7293*** 53.7298***
XLY(DIS) 0.0176 2.1042 0.4836 3.9309 0.8441*** 42.3541** 82.2823
Bond (AGG) 0.0235 0.4209 -3.1702 73.4637 280.6589*** 140.5175*** 35.9942*
Exchange (FXE) 0.0135 0.7072 0.033 2.177 0.2438*** 52.3304*** 60.0650***
Gold (GSG) -0.031 1.8638 -0.3957 2.171 0.2746*** 29.937 60.0417***
Oil (USO) -0.0522 2.4324 -0.2126 2.0082 0.2165*** 34.5330* 70.1851***
Real estate (RWR) 0.0027 3.0878 -0.2206 7.991 3.30278*** 131.3786*** 85.6806***

Panel B: Tests for time-varying pairwise dependence
45 stocks 45 stocks-5 others 5 others 50 ETFs

p = 1
0.9535(= 944/990) 0.8800(= 220/225) 1.0000(= 10/10) 0.9584(= 1174/1225)

p = 5
1.0000(= 990/990) 1.0000(= 225/225) 1.0000(= 10/10) 1.0000(= 1225/1225)

Table 1.
Descriptive Statistics and Tests for Time-Varying Dependence

Table 1 provides preliminary analyses of the in-sample data. Panel (a) reports 
summary statistics for 14 representative ETFs: 9 stock ETFs, each of which has the 
highest market value in its own sector, and 5 ETFs of other asset types, including 
bonds, foreign exchange, gold, oil, and real estate. Most ETFs yield positive returns, 
while commodity ETFs (gold and oil) have negative returns. Stock, commodities, 
and real estate ETFs tend to be more volatile than bond and foreign exchange 
ETFs. Further, most returns exhibit non-normal features, as in Alexander and 
Barbosa (2008) and Hsu, Hsu and Kuan (2010). Panel (b) gives the proportion 
of ETF pairs that display time-varying rank correlations. In most cases, we find 
evidence of dynamically evolving measures of dependence among the ETFs. 
These findings support application of our dynamic skewed t copula to describe 
changing dependence patterns in the following analysis.



Bulletin of Monetary Economics and Banking, Volume 22, Number 1, 20198

IV. In-Sample Analysis
We first estimate the marginal distribution of each ETF return series. Then, we 
investigate the contemporaneous dependence of these returns based on the 
dynamic skewed copula. Finally, we select four representative asset pairs to 
further illustrate the flexibility of Cdskt in modeling multivariate dependence.7

7 Details of these 50 ETFs are available upon request.

This table reports the marginal model estimates of 14 representative ETF returns over the sample period of 2006-06-24 to 2011-
06-30. Standard errors are given in the brackets below the parameters. The ***, **and* denote the significance at 1%, 5%, and 10% 
levels, respectively. Log L denotes the log-likelihood value of each marginal model. K-S is the Kolmogorov-Smirnov test with the 
null hypothesis that the model is correctly specified.

Stocks mi (10-3) ri ki0(10-3) ki1 ki2 ki3 di fi1 fi2 logL K-S

XLB(DD) -0.1265 -0.0699* 0.0219*** 0.0706*** 0.9294*** 0.6944*** 0.5099*** 2.5803*** 3.6634*** 4.5237 0.0211
(0.2768) (0.0431) (0.0080) (0.0094) (0.0117) (0.1086) (0.0115) (0.3005) (0.4754)

XLE(XOM) -0.2435 0.0935* 0.1229*** 0.1145*** 0.8855*** 0.5170*** 3.3588*** 8.2809*** 4.9015 0.0241
(0.3381) (0.0431) (0.0080) (0.0094) (0.0117) (0.0115) (0.3005) (0.4754)

XLF(WFC) 0.0741 -0.1167** 0.0067* 0.1128*** 0.8872*** 0.8015*** 0.4931*** 2.9330*** 2.5219*** 4.1069 0.0203
(0.0495) (0.0504) (0.0037) (0.0116) (0.0335) (0.1829) (0.0115) (0.3975) (0.3368)

XLI(GE) 0.0009 0.0046 0.0802*** 0.0843*** 0.9157*** 0.5046*** 3.4614*** 4.2664*** 4.9888 0.0205
(0.0082) (0.0301) (0.0116) (0.0136) (0.0110) (0.0109) (0.4260) (0.6896)

XLK(MSFT) -0.1729 -0.0392 0.0869** 0.1188*** 0.8812*** 0.5127*** 2.9879*** 4.5885*** 5.1598 0.0228
(0.2695) (0.0348) (0.0344) (0.0390) (0.0391) (0.0128) (0.6102) (2.2651)

XLP(WMT) -0.5015 -0.0798 0.0336*** 0.1161*** 0.8839*** 0.0017* 0.4976*** 3.5831*** 3.4657*** 5.9806 0.0187
(0.3937) (0.0631) (0.0058) (0.0131) (0.0159) (0.0009) (0.0111) (0.4955) (0.4444)

XLU(DUK) 0.4004 -0.1648*** 0.0513*** 0.1738*** 0.8257*** 0.0054*** 0.4975*** 4.1372*** 4.1854*** 6.1542 0.019
(0.2860) (0.0551) (0.0080) (0.0189) (0.0223) (0.0009) (0.0112) (0.6493) (0.6022)

XLV(JNJ) -0.1999 -0.035 0.0421 0.0911*** 0.9086*** 0.0088** 0.5007*** 4.6611*** 4.5403*** 5.8591 0.0202
(0.2333) (0.0363) (0.0079) (0.0124) (0.0146) (0.0040) (0.0104) (0.8491) (0.7755)

XLY(DIS) 0.1571 0.0088 0.1380*** 0.1673*** 0.8327*** 0.4893*** 4.4986*** 3.0871*** 5.0272 0.0207
(0.4224) (0.0153) (0.0183) (0.0150) (0.0169) (0.0117) (0.7652) (0.3943)

Bond (AGG) -0.2692** -0.1366 0.0005*** 0.0673*** 0.9324*** 0.7365*** 0.5145*** 3.6681*** 12.1769*** 8.4846 0.0239
(0.1354) (0.1100) (0.0001) (0.0135) (0.0184) (0.1756) (0.0101) (0.6527) (4.6478)

Exchange -0.1365 0.0482 0.0003** 0.0259*** 0.9739*** 0.8808*** 0.5009*** 6.2868*** 6.5946*** 7.1463 0.0207
(FXE) (0.1504) (0.0356) (0.0002) (0.0088) (0.0117) (0.1890) (0.0103) (1.4981) (1.6376)
Gold (GSG) 0.3073 -0.0342 0.1148*** 0.1064*** 0.8932*** 0.0039** 0.5124*** 4.5210*** 11.9471*** 5.2025 0.0232

(1.3851) (0.0342) (0.0151) (0.0123) (0.0123) (0.0018) (0.0103) (0.7678) (4.1833)
Oil (USO) 0.5186 -0.0411 0.1832*** 0.0985*** 0.9015*** 0.0023*** 0.5081*** 5.8351*** 10.5864*** 4.6771 0.0217

(0.6897) (0.0359) (0.0256) (0.0106) (0.0118) (0.0005) (0.0103) (1.2147) (3.3274)
Real estate -0.0381** -0.2210*** 0.0154*** 0.0947*** 0.9053*** 0.7819*** 0.5078*** 3.2109*** 4.1998*** 4.4879 0.0214
(RWR) (0.0152) (0.0509) (0.0041) (0.0079) (0.0160) (0.0952) (0.0111) (0.4349) (0.7066)

Table 2.
Marginal Model Estimates Over The In-Sample Period
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In Table 2, we estimate the marginal distributions of ETF returns via 
the autoregressive and nonlinear GARCH models (AR-NGARCH) with the 
generalized asymmetric Student’s t (AST) errors from Zhu and Galbraith (2011). 
Such specifications are able to capture the non-normal features illustrated in 
Table 1. For simplicity, only 14 marginal models are reported.

The conditional mean and conditional volatility models are as follows:

    (7)

      (8)

For AST distribution, di is the skewness parameter, ƒi1 and ƒi2 represent the degrees 
of freedom on, respectively, the left side and right side of stochastic error .

Two conclusions can be drawn from Table 2. First, the results of the Kolmogorov–
Smirnov test indicate that the marginal models are correctly specified. This 
ensures the consistency of copula estimates in the following subsection. Second, 
the parameter estimates in marginal models confirm the non-normal features of 
return series, including serial correlation, volatility clustering, leverage effects, 
and differing levels of thicknesses in the lower and upper tails. Among these 
features, positive ki3 indicates the presence of a leverage effect in most ETFs, but 
in Gonzalez-Pedraz et al. (2015), a leverage effect is found only in stocks, but not 
in oil. Besides, ƒi1 is generally lower than ƒi2, illustrating a higher probability of 
crashing than booming for each ETF return.

We next transform the standardized residuals ( ) into ( ) 
and estimate the copula models. The results of five dynamic copulas are reported 
in our analysis: CGaussian, Ct, Cskt, Cmskt, and Cdskt. The last three copulas are given in 
equations (1), (3), and (4). To make the analysis more complete, we also provide 
the results of Gaussian and t copulas, as they may be regarded as special cases of 
skewed t copulas. Note that Cmskt here differs from the copula in Gonzalez-Pedraz 
et al. (2015). For Cmskt, we assume the skewness parameters of 4 stock ETFs are 
identical, since the behavior of these stock ETFs are quite similar. This specification 
avoids the “curse of dimensionality” problem for large N and simplifies the 
calculations.

The in-sample comparison between various copula models is based on the 
following criteria:

 

where 1og ƒi is the log-likelihood of each marginal model, logc is the log-likelihood 
of bivariate copula for the ith and jth ETFs, K is the dimension of parameters, and T 
is sample size.
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Table 3 presents in-sample estimates of the copula models. The dynamic skewed 
t copula Cdskt provides the best in-sample goodness-of-fit among the five models, as 
it has the lowest AIC and SIC. The values of AIC and SIC decrease when we switch 
from Cskt to Cmskt, implying the necessity to consider multiple skewness parameters. 
From Cskt, all 50 ETFs correspond to an identical skewness parameter  = 0.43. This 
implicitly assumes that these ETFs are more likely to boom together than crash 
together. This is, however, inconsistent with the findings in existing studies. In 
Patton (2004), Hong, Tu and Zhou (2007), and Rodriguez (2007), among others, 
financial assets are more correlated in market downturns than in upturns. Further, 
the values of AIC and SIC drop further if we switch from Cmskt to Cdskt, suggesting 
that a time-varying dependence pattern is more appropriate for these assets. In 
other words, the dependence structure of these 50 ETFs can change over time. In 

This table reports the estimates of copula models over the sample period of 2006-06-24 to 2011-06-30. Standard errors are given 
in the brackets below the parameters. The ***, **, and * denote the significance at the 1%, 5%, and 10% levels, respectively. Log L 
denotes the log-likelihood value of each model, including both copula and marginal models.

Gaussian t skt mskt dskt
α1 0.0070*** 0.0040*** 0.0046*** 0.0169*** 0.0699***

(0.0009) (0.0005) (0.0007) (0.0014) (0.0248)
α2 0.9504*** 0.9480*** 0.9367*** 0.9614*** 0.6781**

(0.0080) (0.0106) (0.0162) (0.0041) (0.2831)
v 12.2706*** 21.5303*** 16.2605*** 11.1504***

(0.5155) (1.3128) (1.4157) (2.3429)

0.4259*** gSTK 0.3588*** β1 0.7326***

(0.0137) (0.0256) (0.0309)

gAGG 0.1934*** β2 0.7822***

(0.0616) (0.0021)

gFXE 0.0933*
(0.0544)

gGSG 0.2142***
(0.0605)

gUSO 0.1924***
(0.0617)

gRWR 0.3574***
(0.0413)

logL

(×10²) -1.7951 -1.7825 -1.7806 -1.7729 -1.7635

AIC 

(×10²) 3.5903 3.5651 3.5614 3.5459 3.5271

SIC

(×10²) 3.5908 3.5655 3.5619 3.5463 3.5276

Table 3.
Copula Model Estimates Over the In-Sample Period
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some periods, these ETF returns are more correlated when they increase together 
than when they decrease together, while in other periods, such as crisis periods, 
they are more correlated when they decrease together than when they increase 
together. The changing dependence patterns are discussed in more details below.

Estimates of Cdskt show that skewness vector gt is not only autoregressive (b2= 
0.78), but also negatively correlated with shocks from dependence system at t -1 
(b12 = -0.73).

Comparing Ct and Cdskt, we observe that the autoregressive coefficients in 
conditional correlation a2 and degree of freedom v are smaller if the dynamics of 
skewness parameter are considered. The decrease in aX implies that the dynamic 
dependence structure is captured not only by the evolution of conditional 
correlation, but also by the evolution of the skewness parameter. The decrease in v 
indicates stronger tail dependence in Cdskt than in Cskt. Hence, Cdskt with a dynamic 
skewness vector is more likely to capture the dependence structure under extreme 
market conditions.

Figure 2. Skewness Parameter Estimates Series of 50 ETFs Based on Cdskt

The figures plot the skewness vector gt in equation (5) based on the dynamic skewed copula model Cdskt. Panel (a) is for the 45 stock 
ETFs, and panel (b) to (f) are for the ETFs of bond (AGG), foreign exchange ETF (FXE), gold (GSG), oil (USO) and real estate (RWR). 
The in-sample part is estimated from the sample of July 24, 2006 - June 30, 2011. The out-of-sample part is the one-step-ahead 
forecast with a rolling window of the past 1245 daily observations on each day of July 1, 2011 - June 28, 2013. 
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Figure 2. Skewness Parameter Estimates Series of 50 ETFs Based on Cdskt (contd.)
The figures plot the skewness vector gt in equation (5) based on the dynamic skewed copula model Cdskt. Panel (a) is for the 45 stock 
ETFs, and panel (b) to (f) are for the ETFs of bond (AGG), foreign exchange ETF (FXE), gold (GSG), oil (USO) and real estate (RWR). 
The in-sample part is estimated from the sample of July 24, 2006 - June 30, 2011. The out-of-sample part is the one-step-ahead 
forecast with a rolling window of the past 1245 daily observations on each day of July 1, 2011 - June 28, 2013. 

(c) Foreign exchange

2007 2008 2009 2010 2011 2012 2013

-1

-0,5

0

0,5

1

1,5
In-sample Out-of-sample

(d) Gold

2007 2008 2009 2010 2011 2012 2013

-1

0 

1

2

3 
In-sample Out-of-sample

2007 2008 2009 2010 2011 2012 2013

-1,5

-1

-0,5

0

0,5

1
In-sample Out-of-sample

(e) Oil



Modeling High Dimensional Asset Pricing Returns Using a Dynamic Skewed Copula Model 13

Figure 2. Skewness Parameter Estimates Series of 50 ETFs Based on Cdskt (contd.)
The figures plot the skewness vector gt in equation (5) based on the dynamic skewed copula model Cdskt. Panel (a) is for the 45 stock 
ETFs, and panel (b) to (f) are for the ETFs of bond (AGG), foreign exchange ETF (FXE), gold (GSG), oil (USO) and real estate (RWR). 
The in-sample part is estimated from the sample of July 24, 2006 - June 30, 2011. The out-of-sample part is the one-step-ahead 
forecast with a rolling window of the past 1245 daily observations on each day of July 1, 2011 - June 28, 2013. 
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Figure 2 plots the skewness parameter series of 50 ETFs based on Cdskt. In Figure 
2 (a), the 45 stock ETFs have similar skewness parameters, which are positive 
most of the time and become negative during the 2008 subprime crisis and the 
2010 European debt crisis. In Figure 2 (b), the bond ETF generally has negative 
skewness parameters, whose behavior differs from other ETFs. In Figure 2 (c), (d), 
and (f), the skewness parameters of foreign exchange, gold, and real estate ETFs 
are positive in most cases, but decrease dramatically to become negative during 
the 2008 subprime crisis. In Figure 2 (e), the skewness parameters of oil ETFs 
exhibit a two-stage feature: positive before the 2008 subprime crisis and negative 
afterwards. Overall, Figure 2 shows the availability of our dynamic skewed t 
copula Cdskt in describing the dynamics of multivariate dependence patterns; it is 
more much flexible than the Cskt model in Christoffersen et al. (2012) with only a 
single skewness scalar.

Since it would be tedious to analyze all pairwise dependences among the 50 
ETFs, we select four representative groups for further discussion: (1) 45 stocks; (2) 
stocks and bonds; (3) stocks and oil; and (4) oil and gold.
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Figure 3. Average Correlation for 45 Stocks, Bond, Oil, Exchange Rate, and Gold
The figures plot the correlations Rt based on the skewed t copula model Cskt and the dynamic skewed copula model Cdskt. Panel (a) 
is the average bivariate correlations across 990 pairs of stocks, panel (b) is the average correlations between each stock and bond 
across 45 pairs, panel (c) is the average correlations between each stock and oil across 45 pairs, and panel (d) is the correlations of 
foreign exchange and gold. The in-sample part is estimated from the sample of July 24, 2006 - June 30, 2011. The out-of-sample part 
is the one-step-ahead forecast with a rolling window of the past 1245 daily observations on each day of July 1, 2011 - June 28, 2013.
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Figure 3. Average Correlation for 45 Stocks, Bond, Oil, Exchange Rate, and Gold 
(contd.)

The figures plot the correlations Rt based on the skewed t copula model Cskt and the dynamic skewed copula model Cdskt. Panel (a) 
is the average bivariate correlations across 990 pairs of stocks, panel (b) is the average correlations between each stock and bond 
across 45 pairs, panel (c) is the average correlations between each stock and oil across 45 pairs, and panel (d) is the correlations of 
foreign exchange and gold. The in-sample part is estimated from the sample of July 24, 2006 - June 30, 2011. The out-of-sample part 
is the one-step-ahead forecast with a rolling window of the past 1245 daily observations on each day of July 1, 2011 - June 28, 2013.

(c) Correlations: stock and oil
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Figure 3 and Figure 4 plot the average correlations and exceeding correlations 
(at 10% and 90% quantiles) within each group. Both the results of the Christoffersen 
et al. (2012) Cskt and our Cdskt are provided to better understand the dynamics in 
dependence patterns. The in-sample portion is estimated from the in-sample 
data, and the out-of-sample portion is calculated via one-step-ahead forecast with 
rolling windows (see Section 5). Note that, for group (2), the exceeding correlation 
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 *STK,AGG,t (0.1) measures the correlation when stock return decreases below 
its 10% quantile and bond return increases over its 90% quantile; and(0.9) 
measures the correlation when stock return increases over its 90% quantile 
and bond return decreases below its 10% quantile. For the other three groups, 
the exceeding correlations at the 10% quantiles ·, ·, t (0.1) (or the 90% quantile 
·, ·, t (0.9)) calculate the correlation of both crashing below their 10% quantiles 

(and booming over their 90% quantiles).
Figure 3 (a) shows average bivariate correlations across 990 ( ) pairs of 

stocks. The correlations within the stock sector described by Cskt and Cdskt are 
similar. These stock ETFs are highly correlated, and the correlations are driven up 
further during the 2008 subprime crisis and the 2011 European debt crisis. This 
is evidence of financial contagion in stock sectors, as documented in Caporale, 
Cipollini, and Spagnolo (2005), Rodriguez (2007), and Kallberg and Pasquariello 
(2008), among others.

Figure 4. Excess Correlation for 45 Stocks, Bond, Oil, Exchange Rate, and Gold
The figures plot the exceeding correlations (at 10% and 90% quantiles) based on the skewed t copula model Cskt and the dynamic 
skewed copula model Cdskt. Panel (a) is the average bivariate exceeding correlations across 990 pairs of stocks, panel (b) is the 
average exceeding correlations between each stock and bond across 45 pairs, panel (c) is the average exceeding correlations 
between each stock and oil across 45 pairs, and panel (d) is the exceeding correlations of foreign exchange and gold. The in-sample 
part is estimated from the sample of July 24, 2006 - June 30, 2011. The out-of-sample part is the one-step-ahead forecast with a 
rolling window of the past 1245 daily observations on each day of July 1, 2011 - June 28, 2013.
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Figure 4 (a) reveals the various dependence patterns captured by Cskt and Cdskt 
via average bivariate exceeding correlations across 990 pairs of stock. From Cskt 

with  = 0.43 > 0, STK (0.9) is always greater than STK (0.1), implying these stocks 
are more likely to boom together than crash together throughout the sample 
interval. However, from Cdskt, STK (0.9) > STK (0.1) during the normal period due to 
positive skewness vector, and STK (0.1) > STK (0.9) due to negative skewness vector. 
This means that the dependence patterns within stock sectors change over time, 
which coincides with the results of Okimoto (2008), Guegan and Zhang (2010), 
and Elkamhi and Stefanova (2015). Hence, the dynamic specification of t enables 
us to distinguish the different dependence patterns in times of crisis and in normal 
periods.
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Figure 4. Excess Correlation for 45 Stocks, Bond, Oil, Exchange Rate, and Gold
(contd.)

The figures plot the exceeding correlations (at 10% and 90% quantiles) based on the skewed t copula model Cskt and the dynamic 
skewed copula model Cdskt. Panel (a) is the average bivariate exceeding correlations across 990 pairs of stocks, panel (b) is the 
average exceeding correlations between each stock and bond across 45 pairs, panel (c) is the average exceeding correlations 
between each stock and oil across 45 pairs, and panel (d) is the exceeding correlations of foreign exchange and gold. The in-sample 
part is estimated from the sample of July 24, 2006 - June 30, 2011. The out-of-sample part is the one-step-ahead forecast with a 
rolling window of the past 1245 daily observations on each day of July 1, 2011 - June 28, 2013.
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(c) Exceedance correlations: stock and oil
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Figure 3 (b) provides the average correlations between each stock ETF and 
bonds across 45 pairs. The negative stock–bond correlation drops dramatically to 
less than -0.30 in the subprime crisis (September 2008–December 2008) and the 
European debt crisis (April 2010–November 2010).

Figure 4 (b) plots the exceeding correlations to demonstrate the difference in 
dependence patterns described by Cskt and Cdskt. Cskt captures only one dependence 
pattern that | *STK,AGG (0.9)| > | *STK,AGG (0.1) |, indicating that the dependence of 
rising stocks and declining bonds is stronger than the dependence of declining 
stocks and rising bonds. Cdskt, in contrast, depicts changing dependence 
patterns. In tranquil periods, *STK,AGG (0.9) is close to *STK,AGG (0.1) as gSKT,t > 0 and 
gAGG,t < 0 (see Figure 2 (a) and (b)). But in times of crisis, | *STK,AGG (0.9)|<| *STK,AGG 
(0.1) |as both gSKT,t and gAGG,t become negative, indicating that the tendency for 
stock prices to decrease and for bond prices to increase is much stronger than the 
reverse tendency. The plunge in *STK,AGG (0.1) is evidence of the “flight-to-safety” 
phenomenon during crises, also documented in Chan, Treepongkaruna, 
Brooks, and Gray (2011), Wu and Liang (2011), and Wu and Lin (2014). Overall, 
incorporation of the dynamic skewness vector makes Cdskt more flexible in 
describing the stock–bond dependence than Cskt.

In Figure 3 (c), we plot the average stock–oil correlation between each stock ETF 
and oil across 45 pairs. The stock–oil correlation is negative (-0.10) before the 2008 
subprime crisis and becomes positive (0.30) afterwards. This implies to investors 
that the diversification benefits of stock and oil diminish after the subprime crisis.

In Figure 3 (c), we easily differentiate between Cskt and Cdskt by their exceeding 
correlations. From Cskt, STK,USO (0.9) always exceeds STK,USO (0.1) as  > 0. However, 
from Cdskt, due to the dynamic specification of the skewness vector, the stock–
oil dependence exhibits a two-stage feature. Before the subprime crisis STK,USO 
(0.9) > STK,USO (0.1), as gSKT,t and gUSO,t are positive (see Figure 2 (a) and (e)); after 
the crisis, STK,USO (0.9) < STK,USO (0.1), as gUSO,t and gSKT,t drop below zero during 
the two crises. This means that stocks and oil are more likely to crash together 
than boom together after a crisis, again confirming the absence of diversification 
opportunities. Although the two-stage feature in correlation is also found in Chan 
et al. (2011) and Mollick and Assefa (2013), the two-stage feature in dependence 
patterns illustrated by exceeding correlations is rarely investigated. In short, our 
analysis of stock–oil dependence provides additional supporting evidence that 
Cdskt is more flexible than Cskt in describing multivariate dependence.

In Figure 3 (d), foreign exchange (EURO/US dollar) and gold (in dollars) 
become more positively dependent during the 2008 subprime crisis. For investors, 
gold no longer behaves as a safe haven during the crisis period, as stated in Sari, 
Hammoudeh and Soytas (2010), Joy (2011), and Pukthuanthong and Roll (2011).

In Figure 4 (d), Cskt and Cdskt can be easily distinguished by their exceeding 
correlations. Based on Cskt with  > 0, we may conclude that foreign exchange 
and gold stick to one dependence pattern, that FXE,GSG (0.9) > FXE,GSG (0.1). The 
two ETFs are more dependent when booming simultaneously than crashing 
simultaneously. But this is not the case for Cdskt with dynamic skewness vector. 
During the 2008 subprime crisis, FXE,GSG (0.9) is shown to be lower than FXE,GSG(0.1) 
as both gFXE,t and gGSG,t drop sharply below zero (see Figure 2 (c) and (d)). This 
finding implies a higher likelihood of a depreciating Euro and a falling gold price 



Modeling High Dimensional Asset Pricing Returns Using a Dynamic Skewed Copula Model 19

following the subprime crisis. Investors managing portfolio risk should avoid 
holding both these assets for about six months. Again, this investigation of foreign 
exchange–gold dependence suggests the higher flexibility of Cdskt over Cskt in 
modeling multivariate dependence.

In summary, this section applies dynamic skewed t copula Cdskt to study the 
dependence of 50 ETF returns. The Cdskt model with dynamic skewness vector 
enables us to model multivariate dependence more flexibly and parsimoniously 
than existing copulas. We conclude that the 50 ETFs exhibit changing dependence 
patterns rather than only one dependence pattern throughout the sample interval.

V. OUT-OF-SAMPLE PERFORMANCE
This section investigates out-of-sample performance of the dynamic skewed t 
copula in the following two respects. First, we statistically analyze the predictive 
ability of our model Cdskt. Second, we evaluate the economic value of following the 
Cdskt-based strategy in an asset allocation problem.

A rolling sample method is utilized in the out-of-sample analysis. The 1245 
observations from July 24, 2006 to June 30, 2011 are used for the in-sample 
estimation, and the 501 observations from July 1, 2011 to June 28, 2013 are left 
for the out-of-sample forecast. For each day, we re-estimate the model using the 
past 1245 observations. This procedure is repeated 501 times, so that 501 one-day-
ahead joint distribution forecasts are produced.

To assess the predictive accuracy of our Cdskt model, we compare the predicted 
log-likelihood values of the five copulas mentioned in Section 4 and construct the 
Hansen (2005) superior predictive ability (SPA) test.

Table 4.
Predictive Ability Comparison of Copulas over the Out-of-Sample Period

This table reports the average of predictive log-likelihood (OOS) and its standard deviation (std) over the sample period of 
2011/07/01- 2013/06/28. The last row shows the test statistic of Hansen’s (2005) superior predictive ability and its p-value.

Gaussian t skt mskt dskt
OOS -161.6246 -162.8618 -163.1109 -161.8134 -159.3144
std 10.9788 12.3610 12.6055 13.3144 9.8596
SPA test stastic 3.3499 p-value 0.3500

Table 4 reports the out-of-sample average of predicted log-likelihood of each 
copula (OOS) and its standard deviation (std), as in Lee and Long (2009). A model 
is expected to be closer to its true state if OOS is larger. Cdskt is shown to have the 
highest predicted log-likelihood and the lowest standard deviation. We conclude 
that, among the five copulas, Cdskt has the highest out-of-sample predictive ability 
in modeling the dependence of the 50 ETF returns.

Further, the Hansen (2005) SPA test gives us statistical justification for the 
outperformance of Cdskt. The null hypothesis is that the benchmark model is not 
inferior to any of the alternative models. Here, our dynamic skewed t copula Cdskt 
is set as the benchmark, while the other four copulas are regarded as alternatives. 
The SPA test statistic is 3.34 with p-value 0.35. Since we fail to reject the null at the 
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1% significance level, it can be inferred that Cdskt performs at least as well as the 
other copulas considered.

To explore the economic value of modeling dynamic multivariate dependence, 
we then consider the optimization problem of an investor allocating wealth among 
the 50 ETFs. Our hypothetical investor is characterized by a constant relative risk 
aversion utility, as in Patton (2004), and Wu and Lin (2014). At each period t, the 
investor solves the following optimization problem based on the one-step-ahead 
forecast to predict the portfolio weight at t +1:

 

where  are the weights on the N (=50)
ETFs, and they can be negative without short selling constraints. rp,t+1 is portfolio 
return, rp,t+1= ’t+1rt+1, and rt+1 = (r1,t+1, · · ·,rN,t+1)’ is the return vector of N ETFs at t+1. 
η is the degree of relative risk aversion and takes three levels: η = 1, 5, 10. The 
rolling window procedure is described at the beginning of this section.

Table 5 shows portfolio performance based on five copula models. We calculate 
each portfolio’s annualized return (Mean), standard deviation (SD), terminal wealth 
value, 5% value-at-risk (VaR) and 5% expected shortfall (ES). Besides, following 
Wu and Liang (2011) and Wu and Lin (2014), we compute the performance fee (PF) 
that an investor is willing to pay to switch from another copula-based strategy to 
our dynamic skewed t copula-based strategy. A positive PF means the Cdskt-based 
strategy is better than the alternative strategy using another copula.

Table 5.
Portfolio Performance Comparison of Copula over the Out-of-Sample Period

This table summarizes the copula-based portfolio performance over the sample period of 2011/07/01-2013/06/28. η represents the 
coefficient of relative risk aversion. The sample mean, standard deviation (SD), 5% value-at-risk (VaR) and 5% expected shortfall 
have been annualized. PF denotes the performance fee an investor will pay if she switches from other copula-based strategy to the 
dynamic skewed t copula Cdskt based strategy. A positive PF means the portfolio based on Cdskt performs better than the portfolio 
based on the other copula.

Gaussian t skt mskt dskt
η = 1 Mean (%) 7.6117 6.3292 2.7480 9.3198 12.2894

SD (%) 8.1428 5.9066 3.3932 10.1465 10.2767
Terminal wealth 115.8027 113.0589 105.5715 119.5081 126.0890
VaR (5%) 7.0741 8.5426 9.5672 7.0266 4.8034
ES (5%) 10.1067 13.6605 13.9828 9.2268 7.8926
PF 4.1039 4.9972 7.6096 3.2681

η = 5 Mean (%) 3.417 2.5577 1.1831 5.1931 5.6061
SD (%) 4.0111 3.3487 2.4675 5.0202 5.1792
Terminal wealth 106.9508 105.1809 102.3802 110.656 111.5264
VaR (5%) 5.1879 7.0258 8.7943 6.4351 3.4489
ES (5%) 7.848 9.6845 14.7601 9.1713 5.0896
PF 1.9500 2.6848 3.2373 0.4421

η = 10 Mean (%) 1.0821 1.6425 -1.3837 0.5349 2.5969
SD (%) 2.4613 3.4825 6.3294 4.9361 3.7858
Terminal wealth 102.1760 103.3121 97.2518 101.0727 105.2612
VaR (5%) 4.2958 4.9818 7.5480 6.0646 3.1901
ES (5%) 6.1846 6.7866 13.5201 9.2427 4.6196
PF 1.1105 0.9195 6.9027 3.2612
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In Table 5, among the five strategies, the strategy using Cdskt performs best, 
followed by the strategies using CGaussian, Ct and Cmskt, while Cskt performs worst. This 
ranking is based on the values of performance fee and is unaffected by the levels 
of investor risk aversion.

An investor who disregards changing dependence patterns incurs losses when 
modeling high dimensional financial returns. For example, the performance fee 
from Cmskt to Cdskt for an investor with η = 10 is 3.26 cents per dollar. The gains from 
considering changing dependence patterns are also revealed in Okimoto (2008) 
and Elkamhi and Stefanova (2015). It is inferred that higher-dimensional financial 
returns usually exhibit changing dependence patterns, and rarely do they follow 
just one dependence pattern over time. Hence, employing a flexible dynamic 
model to accommodate this changing dependence can make investors better off.

Further, portfolio performance is sensitive to the correctness of dependence 
characterization. If the dependence structure is predicted based on an incorrect 
copula, such as Cskt, the corresponding portfolio will perform even worse than 
portfolios that simply use correlation-based models like CGaussian and Ct.

Why do strategies using Cskt and Cdskt perform so differently? Figure 5 
investigates the portfolio weights resulting from Cskt and Cdskt. It is evident that 
the two types of investor have different opinions mainly about their weights on 
stocks, bonds, and foreign exchange.
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Figure 5. Comparing Portfolio Weights for Cskt and Cdskt

The figures plot the portfolio weights on 50 ETFs based on the skewed t copula model Cskt and the dynamic skewed copula model 
Cdskt over the sample period of July 1, 2011 - June 28, 2013. Panel (a) is the average weights on 45 stock ETFs, panel (b)-(f) are the 
average weights on bond, foreign exchange, gold, oil and real estate.

Figure 5 (a) plots the average weights on 45 stock ETFs and illustrates that the 
investor following Cdskt buys more stocks than the investor following Cskt. This is 
because Cdskt predicts higher 90% exceeding correlations than Cskt (see Figure 5 (a)). 
In other words, the Cdskt-based investor is more likely to believe that the stocks will 
increase together, so he will hold more stocks than the Cskt-based investor.
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Figure 5. Comparing Portfolio Weights for Cskt and Cdskt (contd.)
The figures plot the portfolio weights on 50 ETFs based on the skewed t copula model Cskt and the dynamic skewed copula model 
Cdskt over the sample period of July 1, 2011 - June 28, 2013. Panel (a) is the average weights on 45 stock ETFs, panel (b)-(f) are the 
average weights on bond, foreign exchange, gold, oil and real estate.
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Figure 5. Comparing Portfolio Weights for Cskt and Cdskt (contd.)
The figures plot the portfolio weights on 50 ETFs based on the skewed t copula model Cskt and the dynamic skewed copula model 
Cdskt over the sample period of July 1, 2011 - June 28, 2013. Panel (a) is the average weights on 45 stock ETFs, panel (b)-(f) are the 
average weights on bond, foreign exchange, gold, oil and real estate.
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Figure 5 (b) shows that the investor using Cdskt shorts more bond than the 
investor using Cskt. The reason for this is similar: the 90% exceeding correlations 
from Cdskt are higher (in absolute value) in those from Cskt (see Figure 4 (b)). From 
the perspective of the Cdskt-based investor, bond price has a higher probability of 
decreasing when stock price increases, hence this investor tries to sell more bonds 
than the Cskt counter-partner.

Figure 5 (c) indicates the investor with Cskt mostly longs foreign exchange, 
while the investor with Cdskt shorts it before June 2012 and longs it afterwards. 
This difference in positions is caused by their forecasts of skewness parameters. 
Cskt predicts a positive skewness scalar for both stock and foreign exchange (see 
Figure 2 (a) and (c)), and the investor buys both of them believing the two assets 
will increase together. In contrast, Cdskt also predicts positive Cskt, but the investor 
believes gFXE is negative during the period July 2011 to June 2012 and becomes 



Bulletin of Monetary Economics and Banking, Volume 22, Number 1, 201924

positive afterwards. In this investor’s opinion, stocks and foreign exchange before 
June 2012 are not as closely correlated as they are after June 2012, so the investor 
sells foreign exchange before June 2012 and then buys it again.

This result is obtained based on a longer in-sample period and a relatively 
shorter out-of-sample period. As a robustness check, we follow Narayan and 
Bannigidadmath (2015) and split our sample from June 24, 2006 to June 28, 2013 
into a 50:50 in-sample and out-of-sample ratio. The in-sample period is now June 
24, 2006 to December 31, 2009, and the out-of-sample period is January 4, 2010 to 
June 28, 2013. Table 6 reports in-sample estimates of copula models, Table 7 shows 
out-of-sample predictive ability test results, and Table 8 shows out-of-sample 
portfolio performance.8

8 To save space, we skip the in-sample estimates of 50 marginal modes; they are available upon request.

This table reports the estimates of copula models over the sample period of 2006/06/24 – 2009/12/31. Standard errors are in 
the brackets below the parameters. The ***, ** and * denote statistical significance levels at 1%, 5%, and 10%, respectively. 
logL denotes the log-likelihood value of each model, including both copula and marginal models.

Gaussian t skt mskt dskt
a1 0.0079*** a1 0.0052*** a1 0.0040* a1 0.0142*** a1 0.0127***

(0.0013) (0.0009) (0.0022) (0.0035) (0.0032)

a2 0.9254*** a2 0.9073*** a2 0.8007** a2 0.8621** a2 0.8304***

(0.0161) (0.0244) (0.3300) (0.5809) (0.0565)

v 13.2215*** v 13.0034*** v 14.3011*** v 15.0218***

(0.7221) (0.1193) (0.8183) (0.4765)

0.0064*** gSTK 0.4872*** b1 -0.7094**

(0.0230) (0.0205) (0.2992)

gAGG -0.2425*** b2 0.7561**

(0.1985) (0.3699)

gFXE 0.0472***

(0.2455)

gGSG 0.2473***

(0.2473)

gUSO 0.2848**

(0.1293)

gRWR 0.4835***

(0.0428)

logL (x 102) -1.8413 -1.8316 -1.7211 -1.6355 -1.6053

AIC (x 102) 3.7226 3.7233 3.5222 3.4510 3.3107

BIC (x 102) 3.7414 3.7516 3.5600 3.5359 3.3579

Table 6.
Copula Model Estimates Over the In-Sample Period: 2006/06/24 – 2009/12/31
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Overall, the results are robust when the sample is split 50:50. In Table 6, the 
dynamic skewed t copula Cdskt provides the best in-sample goodness-of-fit among 
the five models with the lowest AIC and SIC. In Table 7, the dynamic skewed t 
copula Cdskt has the highest predictive ability and we fail to reject the SPA test, 
though predictive ability is lowered compared with the result shown in Table 4. 
In Table 8, the out-of-sample portfolio performance of the Cdskt-based strategy is 
still best, as it has the highest average return (Mean) and terminal wealth, and 
the lowest standard deviation, VaR, and expected shortfall. The performance fees 
of switching from other copula models to Cdskt are positive regardless of the risk 
aversion levels. The only difference is that the portfolios in this scenario with 
longer out-of-sample period (Table 8) exhibit higher returns but higher risks (such 
as VaR and ES) than the portfolios in the original scenario (Table 5).

Table 7.
Predictive Ability Comparison of Copulas Over The Out-of-Sample Period: 

2010/01.04-2013/06/28
This table reports the average of predictive log-likelihood (OOS) and its standard deviation (std) over the sample period of 
2010/01/04- 2013/06/28. The last row shows the test statistic of Hansen’s (2005) superior predictive ability and its p-value.

Gaussian t skt mskt dskt
OOS -165.8489 -187.2045 -202.6078 -179.9992 -162.7837
std 10.4253 8.9757 7.6717 7.6398 7.3134
SPA test stastic 4.3964 p-value 0.5260

Table 8.
Portfolio Performance Comparison of Copula Over the Out-of-Sample Period: 

2010/01/04-2013/06/28
This table shows the copula-based portfolio performance over the sample period of 2010/01/04-2013/06/28. η represents the 
coefficient of relative risk aversion. The sample mean, standard deviation (SD), 5% value-at-risk (VaR) and 5% expected shortfall 
(ES) have been annualized. PF denotes the performance fee an investor will pay if he switches from other copula-based strategy 
to the dynamic skewed t copula (dskt) based strategy. A positive PF means the portfolio based on dskt performs better than the 
portfolio based on the other copula.

Gaussian t skt mskt dskt
η =1 Mean (%) 5.6245 5.1260 2.8879 5.2069 5.9158

SD (%) 5.2256 4.2342 4.1870 4.5801 4.1862
Terminal wealth 121.0039 119.0257 110.4277 119.3453 122.1703

VaR (95%) 17.6167 17.5622 21.1368 24.7608 23.7524
ES (95%) 25.4321 24.0339 30.4241 28.3839 24.8907

PF 0.3566 0.9695 3.1345 0.8698
η =5 Mean (%) 4.6343 4.6958 2.3312 4.3844 5.3373

SD (%) 5.2682 3.8872 2.8345 3.8955 4.5842
Terminal wealth 117.0972 117.3375 108.3600 116.1259 119.8612

VaR (95%) 14.5856 14.0884 16.7841 17.6962 14.5177
ES (95%) 20.4882 20.8635 24.6501 21.6531 19.8022

PF 0.6494 0.9195 1.8933 0.9272
η =10 Mean (%) 3.2174 3.2886 1.9267 2.8530 4.4226

SD (%) 3.1812 3.1726 1.8923 3.4111 4.0847
Terminal wealth 111.6649 111.9336 106.8752 110.2974 116.2739

VaR (95%) 11.2303 12.2545 14.5709 13.1395 11.8310
ES (95%) 17.3096 17.1338 20.0210 21.9134 18.5828

PF 0.8859 0.8360 2.0405 1.3275
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In summary, the predictive ability tests and portfolio optimization problem in 
this section demonstrate that our dynamic skewed t copula outperforms existing 
copulas, such as those of Christoffersen et al. (2012) and Gonzalez-Pedraz et al. 
(2015). Investors who account for changing multivariate dependence patterns 
are able to forecast the joint distribution of 50 ETF returns more precisely and 
become better off when allocating their wealth across these assets. This illustrates 
the importance of considering changing dependence patterns in modeling high 
dimensional financial returns from an investor point of view.

VI. CONCLUSION
Developing copula models to describe high dimensional multivariate dependence 
is of particular interest to investors who allocate their wealth among a large number 
of assets. Existing skewed t copulas with static skewness parameters are unable to 
capture the time variation in dependence patterns. This paper complements the 
literature by modeling the dynamics of high dimensional multivariate dependence 
in a flexible yet parsimonious way. We extend the copula in Christoffersen et al. 
(2012) and Gonzalez-Pedraz et al. (2015) and propose a dynamic skewed t copula. 
The new model not only allows each variable to have its own skewness parameter, 
but also incorporates an autoregressive mechanism into the evolution of the 
skewness vector.

Applying our dynamic skewed t copula Cdskt to 50 ETF returns, we find that Cdskt 
has better in-sample and out-of-sample performance than other copulas. In the in-
sample analysis, we find that the dependence of these ETFs during crisis periods 
differs from their dependence during tranquil periods, and this feature can be 
captured only by the dynamic specification of skewness vector in our model. This 
indicates that the diversification benefit of most assets (except bonds) is limited 
during crises. The out-of-sample analysis shows the outperformance of Cdskt over 
existing copulas based on the predicted log-likelihood values and the portfolio 
optimization problem. The results documented in this study imply that a large 
number of financial assets tend to have time-varying dependence patterns rather 
than static ones. It is thus inappropriate to stick to one dependence structure when 
investors are modeling high dimensional financial returns.

This paper leaves several topics for further research, including how to increase 
the estimation efficiency of high dimensional copulas. Future research should also 
examine the dependence of financial returns in emerging markets with greater 
fluctuations. These results from the dynamic skewed t copula may be of interest to 
policy makers and market participants alike.
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